Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica ; (12): 3608-3618, 2023.
Article in Chinese | WPRIM | ID: wpr-1004652

ABSTRACT

This study assessed and explored the pharmacological effects and mechanisms of action of IMMH002 {2-amino-2-(2-(4ʹ-(2-ethyloxazol-4-yl)-[1,1ʹ-biphenyl]-4-yl)ethyl)propane-1,3-dio}, a selective sphingosine-1-phosphate receptor subtype 1 (S1P1) modulator, in a concanavalin A (ConA)-induced autoimmune hepatitis (AIH) mouse model. The experimental protocol strictly adhered to the guidelines of the Ethics Committee for Animal Research of the Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (Approval No.: 00004046). Male ICR mice were pre-treated with the drug for four days, followed by induction of AIH through tail vein injection of ConA protein. Liver function, hepatic tissue pathology, peripheral blood parameters, as well as immunoglobulin G (IgG), inflammatory cytokines, T cell distribution, and inflammatory pathways were evaluated in mice. Results demonstrated that IMMH002 significantly reduced liver function indicators such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST), alleviated hepatic tissue inflammation and necrotic damage, decreased serum IgG levels, and lowered the expression of inflammatory mediators including interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interferon γ (IFN-γ). Additionally, it facilitated T lymphocyte homing, downregulated the phosphorylation of nuclear factor kappa-B (NF-κB), IκB kinase β (IKKβ) and nuclear factor inhibitor protein-α (IκBα) proteins in hepatic tissue and cellular inflammation models. Collectively, IMMH002 effectively ameliorated ConA-induced autoimmune hepatitis in mice, exhibiting extensive anti-inflammatory and anti-necrotic effects, thereby laying a theoretical foundation for AIH clinical treatment.

SELECTION OF CITATIONS
SEARCH DETAIL